has anyone tried to use Peter Fritzone's book with maplesim helloworld modelica??
The simple approach from Peter (creating a custom modelica component) is to getting started by running a simple simulation where x_dot(t) = - a*x, where the normal form is x(t) = x^-a for logarithmic type decay.
plot of x(t) should be a decay curve.
Maple Code
A:-LinkModel = fine, connects
SimData := A:-Simulate(outputs = x, returntype = datapoints, tf = 2);
Error, invalid input: Simulate expects value for keyword parameter [outputs, output] to be of type {list(algebraic), list(anyfunc(identical(t)))}, but received x
***********
Simcode
Model Main;
Imports
public HelloWorld HelloWorld1 annotation(Placement(transformation(origin={100.0,200.0},extent={{-20.0,-20.0},{20.0,20.0}},rotation=0)));
annotation(
Diagram(coordinateSystem(preserveAspectRatio=true, extent={{0,0},{200.0,200.0}}),graphics),
Icon(coordinateSystem(preserveAspectRatio=true, extent={{0,0},{200.0,200.0}}),graphics={Rectangle(extent={{0,0},{200.0,200.0}}, lineColor={0,0,0})}),
uses(Modelica(version="3.2.3")),
experiment(
StartTime = 0,
StopTime = 2.0,
__Maplesoft_solver = "ck45",
__Maplesoft_adaptive = true,
Tolerance = 0.1e-4,
__Maplesoft_tolerance_abs = 0.1e-4,
__Maplesoft_step_size = 0.1e-2,
__Maplesoft_min_step_size = 0,
__Maplesoft_max_step_size = 0,
__Maplesoft_plot_points = 2000,
__Maplesoft_numeric_jacobian = false,
__Maplesoft_constraint_iterations = 50,
__Maplesoft_event_iterations = 100,
__Maplesoft_algebraic_error_control = false,
__Maplesoft_algebraic_error_relaxation_factor = 1,
__Maplesoft_rate_hysteresis = 0.1e-9,
__Maplesoft_reduce_events = false,
__Maplesoft_integration_diagnostics = false,
__Maplesoft_compiler = true,
__Maplesoft_compiler_optimize = true,
__Maplesoft_scale_method = "none",
__Maplesoft_plot_event_points = true
)
);
end Main;
class HelloWorld
Real x (start =1);
parameter Real a = 1;
equation
der(x) = -a*x;
end HelloWorld;