As an Arts major at the University of Waterloo, my first day as a co-op student in the Maplesoft marketing department was a bit of a blur. I was hearing a lot of mathematical jargon that I did not understand. Other than a mandatory statistics class in my second year at university, I haven’t taken a math course since high school, over two years ago. I spent my first week as the marketing assistant educating myself about the basics of marketing complex math software. My favourite method for doing this was to read through the Maplesoft user stories. As I read, I was amazed by the variety of customers and the endless applications that Maplesoft products had contributed to. It became apparent that math is a part of every industry and it is in the design of many products. There were a few stories from the robotics industry in particular that really sparked my interest in the software that I now market.
We’ve all seen the futuristic movies where robots gradually get smarter and smarter, developing enough intelligence to control the human race, and eventually, take over the world. As it turns out, Engineered Arts, a UK robotics company, is bringing us one step closer to that reality. Well… they’re maybe not ready for world domination just yet, but they are working on one of the most advanced and human-like robots that the world has seen outside of a Hollywood production, and they are doing this using MapleSim. The first generation of the biologically inspired robot was named RoboThespian. With his ability to speak and sing, he was used to educate, entertain, and investigate new developments in robotics. However, he was largely static. That’s when the engineers began work on generation two of their robot, named Byrun, who has the ability to walk, run, jump, and hop as well as speak and sing. Byrun can even express thousands of different facial features thanks to his projective head display. This makes him even more human-like; scary or cool? I’m thinking a bit of both. If you’re interested in the story, click here to continue reading about it.
Another unexpected use of MapleSim was adopted as a joint research project between Ryerson University and McMaster University. I never would have guessed that math software could be applied to the process of human birth. Nevertheless, a group of researchers used MapleSim to simulate induced labour with a Foley Catheter. In short, this is when a small balloon is inserted through the opening of the cervix creating a downward pressure that effectively tricks the cervix into opening for labour to begin. Though the application of this story surprised me, it makes a lot of sense to use modelling software for a research project like this. It’s more efficient to get all of the kinks out of the virtual model in a simulation program before building a physical model that could end up being dysfunctional. According to Dr. James Andrew Smith, a Biomedical Engineering researcher and Assistant Professor in Electrical and Computer Engineering, who is the lead researcher on the project, “Modern engineering has a lot to offer the medical world,” especially when it saves on time and cost. Click here to read more about this story and to watch a video of the finished model.
After two months at Maplesoft, I have noticed that I don’t look at things in the same way that I used to. I find myself staring at a toaster and imagining how it was designed. Did the engineers use advanced physical simulation and modeling software to make the most efficient toaster possible? Well, if it can still only toast on one side then, my guess is no! Maplesoft has many more user stories that I haven’t had the chance to read yet. With customers ranging from BMW to Pixar, Maplesoft continues to expand its customer base and adapt its software to support more and more unique applications. I can’t wait to hear what new and unexpected things will be done with the software next!